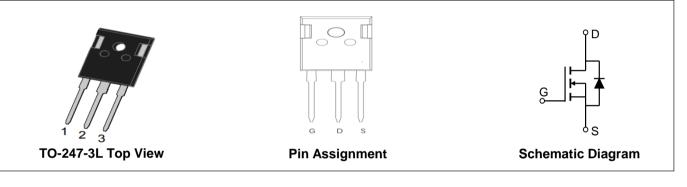
JJMICROELECTRONICS

150V, 177A, 5.5mΩ N-channel Power SGT MOSFET JMSH1507PS

Features

- Excellent $\mathsf{R}_{\mathsf{DS}(\mathsf{ON})}$ and Low Gate Charge
- 100% UIS TESTED
- 100% ΔVds TESTED
- Halogen-free; RoHS-compliant
- Pb-free plating

Applications


- Load Switch
- PWM Application
- Power Management

Product Summary

Parameters	Value	Unit
V _{DSS}	150	V
V _{GS(th)_Typ}	3.1	V
I _D (@V _{GS} =10V)	177	A
R _{DS(ON)_Typ} (@V _{GS} =10V	5.5	mΩ

Ordering Information

Device	Marking	MSL	Package	From	Tube(pcs)	Per Carton (pcs)
JMSH1507PS	H1507P	NA	TO-247-3L	Tube	30	2250

Absolute Maximum Ratings (@ $T_c = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter		Value	Unit
V _{DS}	Drain-to-Source Voltage		150	V
V _{GS}	Gate-to-Source Voltage		±20	V
I-	Continuous Drain Current	$T_C = 25^{\circ}C$	177	А
ID	Continuous Drain Current	$T_{\rm C} = 100^{\circ}{\rm C}$	125	
I _{DM}	Pulsed Drain Current ⁽¹⁾	Pulsed Drain Current ⁽¹⁾		A
E _{AS}	Single Pulsed Avalanche Energy ⁽²⁾		850	mJ
P _D	Power Dissipation	$T_{C} = 25^{\circ}C$	461	W
۲D	Power Dissipation	$T_{c} = 100^{\circ}C$	184	vv
T _J , T _{STG}	Junction & Storage Temperature Range		-55 to 150	°C

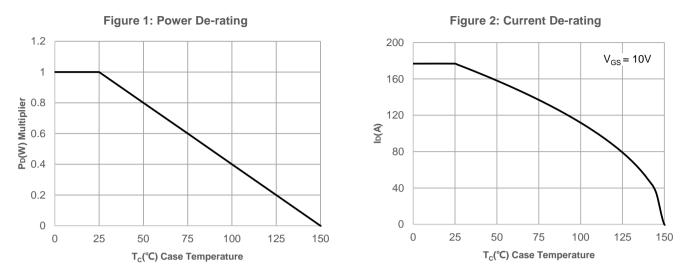
Thermal Characteristics

Symbol	Parameter	Мах	Unit
R _{θJA}	Thermal Resistance, Junction to Ambient ⁽³⁾	31	°C/W
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case	0.3	0/11

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Cha	l racteristics					<u> </u>
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	150	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 120V, V_{GS} = 0V$	-	-	1.0	μA
I _{GSS}	Gate-Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA
On Cha	racteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.1	3.1	4.0	V
R _{DS(ON)}	Static Drain-Source ON-Resistance ⁽⁴⁾	$V_{GS} = 10V, I_{D} = 20A$	-	5.5	7.2	mΩ
Dynami	c Characteristics					
R_{g}	Gate Resistance	f = 1MHz	-	3.8	-	Ω
C _{iss}	Input Capacitance		-	5800	-	pF
C _{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 75V,$ f = 1MHz	-	557	-	pF
C _{rss}	Reverse Transfer Capacitance		-	17	-	pF
Q_g	Total Gate Charge		-	83	-	nC
Q_{gs}	Gate Source Charge	$V_{GS} = 0 \text{ to } 10V$ $V_{DS} = 75V, I_D = 20A$	-	28	-	nC
Q_{gd}	Gate Drain("Miller") Charge	$v_{\rm DS} = 700, n_{\rm D} = 2000$	-	19	-	nC
	ng Characteristics	1		1	-	
t _{d(on)}	Turn-On DelayTime	4	-	21	-	ns
t _r	Turn-On Rise Time	$V_{GS} = 10V, V_{DD} = 75V$	-	39	-	ns
t _{d(off)}	Turn-Off DelayTime	I_D = 20A, R_{GEN} = 3 Ω	-	63	-	ns
t _f	Turn-Off Fall Time		-	32	-	ns
Body D	iode Characteristics			T		-
ls	Maximum Continuous Body Diode Forward Current		-	-	177	А
I _{SM}	Maximum Pulsed Body Diode Forward Curr	ent	-	-	707	А
V_{SD}	Body Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 20A$	-		1.2	V
trr	Body Diode Reverse Recovery Time	1 - 150 di/dt - 1000/wa	-	98	-	ns
Qrr	Body Diode Reverse Recovery Charge	I _F = 15A, di/dt = 100A/us	-	316	-	nC

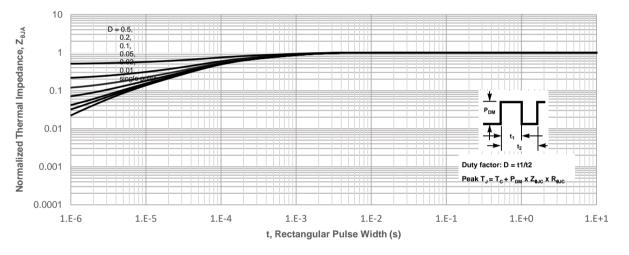
Electrical Characteristics (T_J = 25°C unless otherwise specified)

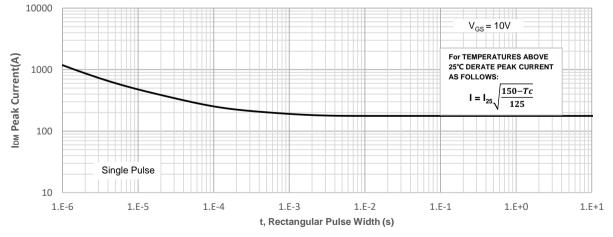
Notes: 1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature.


2. E_{AS} condition: Starting T_J =25C, V_{DD} =60V, V_G =10V, R_G =250hm, L=3mH, I_{AS} =24A, V_{DD} =0V during time in avalanche.

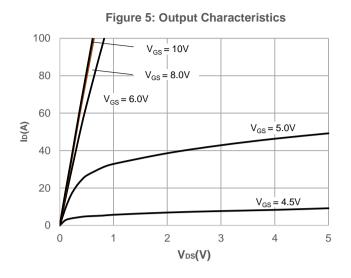
3. $R_{\theta JA}$ is measured with the device mounted on a 1inch² pad of 2oz copper FR4 PCB.

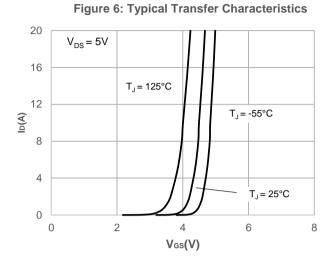
4. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 0.5%.

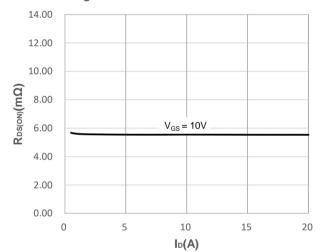




Typical Performance Characteristics







Typical Performance Characteristics

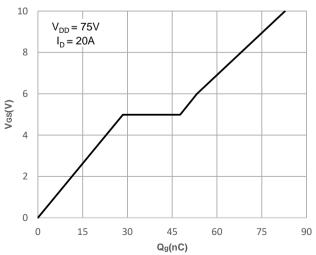


Figure 8: Body Diode Characteristics

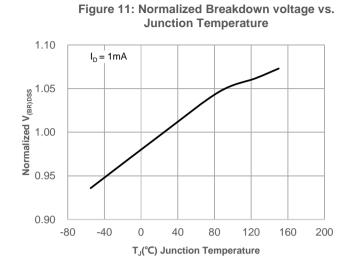
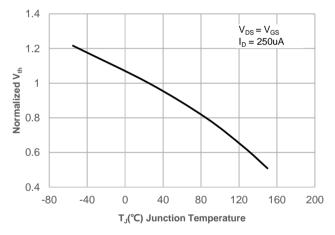


Figure 10: Capacitance Characteristics 10000 C_{iss} 1000 Coss C(pF) 100 10 C_{rss} f = 1MHZ $V_{GS} = 0V$ 1 0 30 120 150 60 90 VDS(V)


All product information is copyrighted and subject to legal disclaimers.

REV 1.0 | 4/7

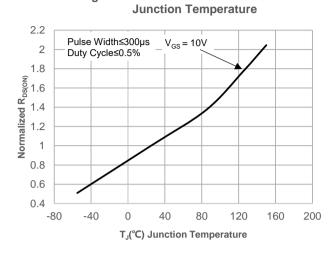
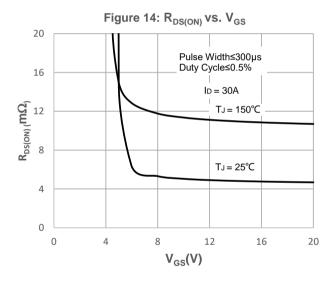



Figure 12: Normalized on Resistance vs.

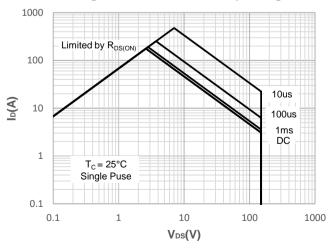
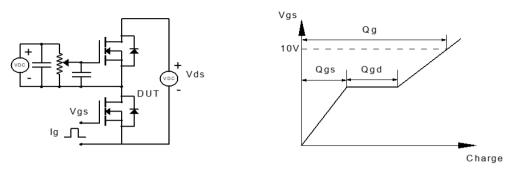



Figure 15: Maximum Safe Operating Area

Test Circuit

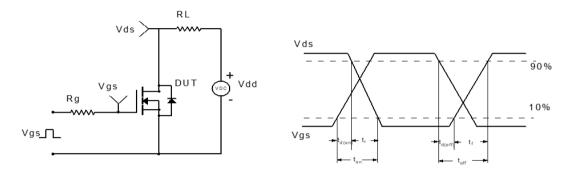


Figure 2: Resistive Switching Test Circuit & Waveform

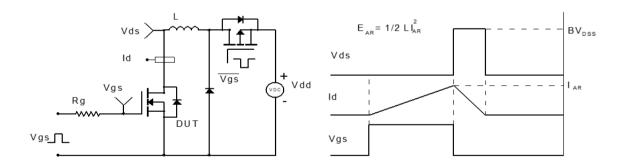


Figure 3: Unclamped Inductive Switching Test Circuit& Waveform

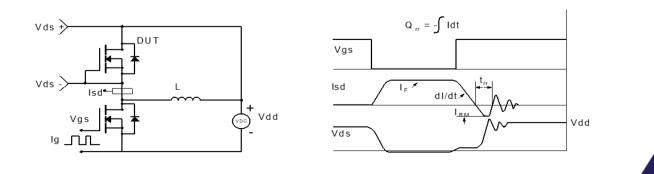
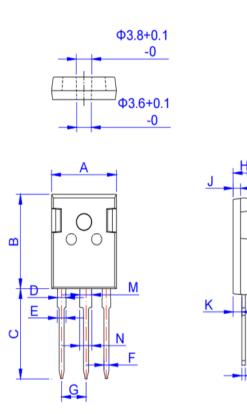



Figure 4: Diode Recovery Test Circuit & Waveform

REV 1.0 | 6/7

Package Mechanical Data(TO-247-3L)

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	15.50	15.80	16.10	0.610	0.622	0.634
В	20.80	21.00	21.20	0.819	0.827	0.835
С	19.70	20.00	20.30	0.776	0.787	0.799
D	1.80	2.00	2.20	0.071	0.079	0.087
E	1.90	2.10	2.30	0.075	0.083	0.091
F	1.00	1.20	1.40	0.039	0.047	0.055
G	5.25		5.65	0.207		0.222
Н	4.80	5.00	5.20	0.189	0.197	0.205
J	1.90	2.00	2.10	0.075	0.079	0.083
К	2.20	2.35	2.50	0.087	0.093	0.098
L	0.41	0.60	0.79	0.016	0.024	0.031
М	2.80	3.00	3.20	0.110	0.118	0.126
Ν	2.90	3.10	3.30	0.114	0.122	0.130

Information furnished in this document is believed to be accurate and reliable. However, Jiangsu JieJie Microelectronics Co.,Ltd assumes no responsibility for the consequences of use without consideration for such information nor use beyond it. Information mentioned in this document is subject to change without notice, apart from that when an agreement is signed, Jiangsu JieJie complies with the agreement. Products and information provided in this document have no infringement of patents. Jiangsu JieJie assumes no responsibility for any infringement of other rights of third parties which may result from the use of such products and information.

M is a registered trademark of Jiangsu JieJie Microelectronics Co.,Ltd.

